The Savvy Aviator #59: EGT, CHT and Leaning

The Savvy Aviator
Forget the POH!

Mixture Control
How I Lean

CHT Gauge
Frequently-Asked Questions

Alcor EGT Gauge
When I operate LOP, my EGTs are noticeably higher than when I operate ROP. Won't those higher EGTs harm my engine?Indeed, if you run 20° LOP instead of 100° ROP, your EGTs will be higher -- 80°F higher, to be exact. This is nothing to worry about. At cruise power, your engine is not capable of producing EGTs high enough to harm anything. When I cruise my T310R LOP (which is the only way I fly it these days), I generally see EGTs in the mid-1500°F range. Given the extraordinary longevity and reliability I've obtained from my engines, they're clearly quite content with those EGTs.
If I operate at peak EGT or LOP, don't I risk burning my exhaust valves?This question belies a common misconception that burned exhaust valves are caused by high EGTs. This is not correct. Burned exhaust valves are caused by valve-guide wear and valve-stem wear, and the best way to keep that from happening is (1) to keep CHTs down, and (2) to run a lean mixture to minimize build-up of combustion byproducts on the valve stem. The leaner you operate (while keeping CHTs at prudent levels), the happier your exhaust valves will be.
Why do you recommend keeping CHTs at or below 380°F, while TCM sets its CHT red line at 460°F and Lycoming sets it at 500°F? Aren't you being excessively conservative?Both TCM and Lycoming specify CHT limits (460°F and 500°F, respectively) that should be considered emergency limits, not operational limits. Allowing your CHT to get anywhere close to those values for significant periods of time will most likely result in premature exhaust-valve problems and increased incidence of cylinder-head fatigue cracking. I do not like to see CHT above about 400°F, which is the temperature at which the aluminum alloy from which your cylinder head is made loses one-half its tensile strength. (The strength decreases rapidly as the temperature rises above 400°F.) For legacy aircraft, I recommend a maximum target CHT of about 380°F just to provide a little extra cushion, and consider any CHT above 400°F to be grounds for "doing something right now" to get it down. (For modern designs like the Cirrus and Diamond, reduce those CHTs by 30°F or so.) The higher the power setting, the further away from 50°F ROP you need to stay to keep CHT at or below the target. As power decreases, this "zone to avoid" around 50°F ROP becomes narrower and narrower. When power gets down to about 60 percent, the avoidance zone disappears and you can run the mixture pretty much anywhere you please without overtemping or overstressing anything. (The APS folks refer to this zone to avoid as "the red box.") In my view, the best way to manage our piston engines is the same way we manage turbine engines: by limiting temperature, specifically by CHT (which is the best proxy we have for ICP). For best engine longevity, set the mixture somewhere that produces CHTs no higher than 380°F (or 350°F for modern designs). This can be very ROP, or slightly LOP, or even right at peak if the power is low enough. What's important is that you limit CHTs to a maximum target value. How you accomplish that is less important from the standpoint of longevity.

JPI Engine Monitor
My engine monitor uses a spark-plug gasket probe on cylinder number two because the threaded boss on that cylinder is already occupied by the factory CHT probe. Is that why my number two CHT always seems to run hot?Yes it is. A spark plug gasket probe generally results in a CHT reading that's about 40°F hotter than a normal, threaded probe on the same cylinder. To avoid this problem, you can purchase a "piggyback" probe for your engine monitor that will screw into the threaded boss on the cylinder, and that will allow the factory probe to be piggy-backed on top of it. The piggy back probe sometimes reads slightly lower than the regular probe, but it's a whole lot closer than the spark-plug gasket probe.
All this LOP stuff may be fine for you fuel-injected guys, but I fly a Cessna 182 with a carbureted O-470 engine. I've been told that LOP operation is a bad idea for carbureted engines. Do you agree?LOP operation is fine for any engine that can run smoothly in that configuration. However, LOP operation requires fairly even mixture distribution among the cylinders. That's sometimes difficult to achieve in a carbureted engine, particularly the O-470 engine in a Cessna 182 (which is famous for its poor mixture distribution). There are a couple of techniques you can use to improve the mixture distribution of your carbureted engine and thereby enable the engine to be leaned more aggressively before it starts to run rough. One is to use a touch of carb heat during cruise (particularly in low OATs). The other is to avoid full-throttle operation, backing off the throttle until you can just see the slightest drop in MP. The warm induction air and the slightly cocked throttle plate both improve fuel atomization and mixture distribution in your engine, and will enable you to lean more aggressively before the engine starts running rough. You should feel quite comfortable experimenting with these techniques to see if you are able to operate LOP without creating uncomfortable engine roughness. Contrary to popular belief, you can't hurt anything by operating LOP. If you get your engine to run smoothly LOP, I suggest you try it (and you'll probably like it). If you can't, then you'll have to be content with ROP operation.
My Cessna 182 has a Texas Skyways O-520 conversion. I also have an Electronics International UBG-16 engine monitor and FP-5 fuel flow system. Texas Skyways is dead-set against LOP operations. They recommend operation ROP up to a maximum of 1825°F of CHT plus EGT combined. For my engine, this normally equates to 50°F ROP. How would you recommend I operate this engine?The notion of using CHT+EGT as a leaning target has absolutely no scientific basis behind it. Electronics International does recommend this technique it in its UBG-16 users manual, but it's poor advice in my opinion. CHT is the most important parameter for cylinder longevity, because it correlates with ICP. I disregard EGT altogether when leaning, although EGT is enormously useful for troubleshooting. If you use EGT+CHT as a leaning reference (as Electronics International suggests), the EGT overwhelms the CHT in the sum and you lose the most important part of the information (which is CHT). Don't get me wrong: The Electronics International UBG-16 is an excellent engine monitor, and E.I.'s technical support is top-notch. But the UBG-16 user's manual ... not so much, in my opinion. I suggest you keep CHTs at or below 380°F (or 350°F for modern designs). There is no limit for EGT. My cylinders generally see EGTs in the high 1500s and they obviously haven't caused a longevity problem. My cylinders and valves use exactly the same metallurgy as yours.

Xerion AuRACLE
You caution against excessive CHTs, but is it possible for CHTs to be too cold?Yes, it's possible to run CHTs so cold that the tetraethyl lead (TEL) in the 100LL is not properly scavenged and starts creating metallic lead deposits in the combustion chamber and lead-fouling the spark plugs. However, in most engines, it takes very cool CHTs (down in the mid-200s °F or lower) for an extended period of time (hours) for this to cause a problem. We usually see this problem in airplanes used for fish spotting, pipeline patrol, search and rescue, and other "loiter-mode" operations. Unless you fly at very low power settings (e.g., 50 percent) and/or at very high altitudes and very cold OATs (e.g., FL240 and -30°C), it's not usually a problem.
I fly a Cessna 172 with no CHT or EGT or fuel flow instrumentation. How should I lean my engine?After stabilizing in cruise and reducing power to the desired cruise RPM, slowly lean the mixture until you feel the onset of perceptible engine roughness. Then slowly richen just to the point that the roughness goes away. With your limited instrumentation, that's the best you can do ... and it's not a bad technique. Having said that, I would strongly recommend that you consider installing a digital engine monitor in your airplane. To my way of thinking, having an engine monitor is even more important in a four-cylinder, single-engine airplane than it is in six-cylinder single or a twin. If you fly a four-cylinder single and you lose a cylinder in flight, you don't have much left. See you next month.
Want to read more from Mike Busch? Check out the rest of his Savvy Aviator columns.
And use this link to send questions to Mike.


